Multi-objective genetic algorithm

نویسنده

  • Robin Devooght
چکیده

Real world problems often present multiple, frequently conflicting, objectives. The research for optimal solutions of multi-objective problems can be achieved through means of genetic algorithms, which are inspired by the natural process of evolution: an initial population of solutions is randomly generated, then pairs of solutions are selected and combined in order to create new solutions slightly different from the initial solutions. The fittest solutions are kept in the population and are used to generate new solutions. Generations after generations, the initially random population converge towards optimal solutions. The genetic algorithms have the advantage of being easily implemented in any multi-objective problem, and are used in numerous area such as safety systems and electrical network. In this report, key concepts related to multi-objective optimization problems have been presented, such as the notion of decision variables (the actionable characteristics of the problem), objective functions (the relations between the actionable and the observable characteristics) and Pareto optimality (which formally describe how to compare solutions in a multi-objective problem). The mechanisms of genetic algorithms have been described, including the following: the crossover and the mutation which constitute the mechanism of reproduction, the method used for ranking the solutions in a population and the mechanism of selection. A genetic algorithm was implemented to solve a two-objective problem consisting in expanding a power transmission network while optimizing the cost and the reliability of the network. A flaw of the genetic algorithm was illustrated by this example: in spite of a clear convergence of the algorithm towards optimal solutions, the genetic algorithm did not cover uniformly the search space, and the most interesting part (the solutions with low cost) was not explored. Three methods were proposed to guide the convergence of the genetic algorithm towards desired solutions: biasing the generation of the initial population in order to favour the exploration of a certain region of the search space, attributing different weights to the objectives and comparing the solutions according to the weighted sum of the objectives (WPMOGA), and including minimum and maximum trades-off in the comparison of solutions (G-MOGA). The three methods were tested on the network expansion problem in order to find solutions that imply adding

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Thermodynamic Design of Turbofan Engines using Multi-objective Genetic Algorithm

The aim of this study is to optimize performance functions of turbofan engines considering the off-design model of turbofan engine as well as employing multi-objective genetic algorithm. The design variables including high-pressure compressor pressure ratio, low-pressure compressor pressure ratio, fan pressure ratio and bypass ratio are calculated in such a way that the corresponding functions ...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

متن کامل

Designing a multi-objective nonlinear cross-docking location allocation model using genetic algorithm

In this study, a cross-docking system is designed at strategic and tactical levels. For making the strategic decisions, a multi-objective nonlinear location allocation model for cross-docks is presented based on a distri-bution location allocation model by Andreas Klose and Andreas Drexl. The model is further developed to in-clude the whole supply chain members and the objective functions are w...

متن کامل

Application of Genetic Algorithm to Determine Kinetic Parameters of Free Radical Polymerization of Vinyl Acetate by Multi-objective Optimization Technique

A Multi-objective optimization procedure has been developed to determine some kinetic parameters of free radical polymerization of vinyl acetate based on genetic algorithm. For this purpose, mathematical modeling of free radical polymerization of vinyl acetate is carried out first and then selected kinetic parameters are optimized by minimizing objective functions defined from comparing exp...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011